Unsupervised Text Feature Selection Using Memetic Dichotomous Differential Evolution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Feature Selection for Text Data

Feature selection for unsupervised tasks is particularly challenging, especially when dealing with text data. The increase in online documents and email communication creates a need for tools that can operate without the supervision of the user. In this paper we look at novel feature selection techniques that address this need. A distributional similarity measure from information theory is appl...

متن کامل

Unsupervised Feature Selection Using Feature Similarity

ÐIn this article, we describe an unsupervised feature selection algorithm suitable for data sets, large in both dimension and size. The method is based on measuring similarity between features whereby redundancy therein is removed. This does not need any search and, therefore, is fast. A new feature similarity measure, called maximum information compression index, is introduced. The algorithm i...

متن کامل

Unsupervised Feature Selection Using Feature Density Functions

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniq...

متن کامل

Unsupervised Feature Selection Using Nonnegative Spectral Analysis

In this paper, a new unsupervised learning algorithm, namely Nonnegative Discriminative Feature Selection (NDFS), is proposed. To exploit the discriminative information in unsupervised scenarios, we perform spectral clustering to learn the cluster labels of the input samples, during which the feature selection is performed simultaneously. The joint learning of the cluster labels and feature sel...

متن کامل

Unsupervised feature selection using weighted principal components

Feature selection has received considerable attention in various areas as a way to select informative features and to simplify the statistical model through dimensional reduction. One of the most widely used methods for dimensional reduction includes principal component analysis (PCA). Despite its popularity, PCA suffers from a lack of interpretability of the original feature because the reduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2020

ISSN: 1999-4893

DOI: 10.3390/a13060131